Business Information Systems & Operations Research

Computational Intelligence

Prof. Dr. Oliver Wendt

Dr. habil. Mahdi Moeini

Summer term 2022


Examination: The exam assignments are in English, but you can write your answers either in English or in German.

Important notice:

On the OLAT page, the lectures are available as recorded videos. Any further new information will be published on the OLAT page in which you can register. The OLAT page is protected by a password that you can ask it from Dr. habil. Mahdi Moeini: mahdi.moeini(at)

To avoid spams and stealthy registrations, only registrations with a valid RHRK e-mail address are permitted. Any registration by private e-mail addresses will be removed from the OLAT page without any further warning. Once you are on the OLAT page, you should register (check the left menu of the page) to be enrolled in the corresponding course(s) (CI or OLS or both).

The language of the lectures is English. If you need further information, please contact Dr. habil. Mahdi Moeini via: mahdi.moeini(at)

Computational Intelligence:

Short Decsription:

For many assignment and permutation problems an exponential growth of the number of solutions prohibits the application of optimization algorithms known from Operations Research. Rather, literature and practitioners resort to the application of heuristics. Heuristics come with much lower computational effort but as a downside - cannot provide a guarantee for the optimality of the solutions found. First, the course focuses on local search heuristics inspired by analogies to nature (Genetic Algorithms and Simulated Annealing) and Tabu Search and compares their applicability for different classes of planning problems. Furthermore, most decision processes do not only confront us with a high number of alternatives but also with uncertainty. We will show how Machine Learning (esp. Reinforcement Learning) can address this uncertainty in complex decision processes, when an appropriate representation of the search space and the value functions can be found. Artificial Neural Networks are introduced (as another paradigm in analogy to nature) as a computational solution of this representational problem.

Furthermore, the course has a section on programming with Python and an initiation to the commercial solver Gurobi. The course offers several practical programming sessions.

Zum Seitenanfang