Artificial Intelligence

Prof. Dr. Oliver Wendt
Konstantin Kloster, M.Sc.

Content:

Artificial Intelligence I 

  • An introductory course to programming
  • Array/tensor processing and vectorization
  • Basics of parallel programming:
    • Sequential flow of control vs concurrency vs. parallelism
    • Parallel programming models
    • Hardware acceleration: GPUs/TPUs

 

Artificial Intelligence II

  • Introduction to Artificial Intelligence:
    • Learning from examples
    • Types of learning
    • Evaluation metrics
    • Train/val/test splits
    • Cross-validation
    • Data preprocessing
  • Linear Models:
    • Loss functions
    • Gradient Descent
    • Regularization
    • Hyperparameter optimization
  • Neural Networks:
    • Layered architectures
    • Activation functions
    • Backpropagation
    • Weight initialization
    • Dropout
    • Enhanced optimization algorithms: (Nesterov) Momentum, Adagrad, RMSprop, Adam
  • Intro to Convolutional Neural Networks:
    • Common layer types
    • Patterns and popular architectures
    • Transfer Learning / Fine-tuning
  • Intro to Reinforcement Learning:
    • Markov Decision Processes
    • Value Functions
    • Value Iteration / Policy Iteration
    • Q-Learning
    • Deep Q-Learning